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Abstract—Rapid advances in genomic sequencing technology
have resulted in a data deluge in biology and bioinformatics. This
increase in data volumes has introduced computational challenges
for frequently performed sequence analytics routines such as
DNA and protein homology searches; these must also preferably
be done in real-time. In this paper, we propose a scalable and
similarity-aware distributed storage framework, Mendel, that
enables retrieval of biologically significant DNA and protein
alignments against a voluminous genomic sequence database.
Mendel fragments the sequence data and generates an inverted-
index, which is then dispersed over a distributed collection of
machines using a locality aware distributed hash table. A novel
distributed nearest neighbor search algorithm identifies sequence
segments with high similarity and extending them to find an
alignment. This paper includes an empirical evaluation of the
performance, sensitivity, and scalability of the proposed system
versus the National Center for Biotechnology Information’s non-
redundant protein dataset. Mendel demonstrates higher sensitiv-
ity and faster query evaluations when compared to other modern
frameworks.

Index Terms—Mendel; sequence alignment; distributed storage
system;

I. INTRODUCTION

The emergence of next-generation sequencing technologies
has contributed to a dramatic increase in genomic data vol-
umes. The variety of biological analyses such as SNP discov-
ery, genotyping, and personal genomics have posed significant
I/O workload challenges. Genomic sequence alignment and
homology searching are critical components in genomic anal-
ysis. We investigate this problem in the context of similarity-
aware distributed hash tables (DHTs) with nearest neighbor
searches. DHTs provide efficient, scalable, and robust scale-
out architectures where commodity hardware can be added
incrementally if there is demand for additional storage or
processing.

Sequence alignment is the process of identifying regions
in deoxyribonucleic acid (DNA) or protein sequences that are
similar as a result of a some biological relationship between
the sequences. The similarity between sequences, or lack
thereof, can often provide important clues about the func-
tionality and evolutionary origins of genes and other genomic
elements. To be able to account for evolutionary changes and
sequencing errors, an alignment method needs to perform inex-
act matching. Efficient sequence alignment methods have been
actively explored [1]–[3]. These approaches use an algorithmic

technique called seed-and-extend alignment. However, these
tools are designed to run on a single computer, where it may
result in prolonged response times or limited sensitivity in the
alignments that are found [4]. To improve performance, efforts
in parallel and distributed computing setting have targeted the
use of message passing interfaces (MPI) [3] and MapReduce
frameworks [4]–[7].

We have designed and developed a scalable, similarity-
aware distributed storage framework, Mendel, for large-scale
genomic sequence analyses. Mendel provides a similarity
aware sequence alignment over a voluminous collection of
reference sequences using locality sensitive DHTs and an
efficient distributed nearest neighbor search (NNS) algorithm.
Our sliding window style exhaustive indexing scheme reduces
the probability of missing relevant sequences due to variations
within the sequences. Our algorithms are tailored particularly
for distributed clusters to retain the ability to harness the
datacenter (or cloud) storage and computing environments.

A. Usage Scenarios

Metagenomics, also known as environmental genomics, is
a powerful tool for analyzing microbial communities in their
natural environment without requiring a laboratory culture
of the member organisms. The extracted DNA is mapped
to known sequences within a database. Next-generation se-
quencers are capable of producing large quantities of sequence
data that current homology search tools, such as BLAST,
struggle to process in sufficient time. Our framework can
identify significant alignments of the large sampled DNA in
an extensive database of sequences. The large volume of data
sequencers produce is processed in parallel to produce results
faster than BLAST while maintaining high sensitivity.

B. Research Challenges

We consider the problem of scalable, fast, and sensitive
search of genomic sequence alignment queries over a large
collection of reference sequences. The challenges involved in
doing so include:

1) The collection of reference sequences may be voluminous
and continues to grow rapidly.

2) Algorithms used in existing systems are not particularly
applicable for the cluster computing environment.



3) The queries we consider need to support both DNA and
protein sequence data.

4) Existing systems compensate similarity sensitive search
for better performance.

C. Research Questions

Research questions that we explore in this paper include:
1) How can we enable scalable indexing over a collection

of reference sequences while preserving similarity among
the sequences?

2) How can the distributed cluster environment be harnessed
to achieve fast query evaluations over voluminous se-
quencing datasets?

3) How can similarity queries evaluations, rather than exact
matching, be performed at scale?

4) Can we achieve these goals while being timely and
minimizing user-intervention?

D. Paper Contributions

Here, we present our framework, Mendel, and alignment
algorithm for searching and aligning sequences over a large
collection of reference sequences that are indexed and dis-
persed over a distributed cluster. We have extended the NNS
data structure vantage point tree (vp-tree) to a distributed
storage environment to support similar sequence search at
scale. We have designed a inverted indexing scheme to index
sequence segments to a DHT while preserving similarity
within the vp-tree structure. We also include a refinement of
our algorithm to balance the vp-tree to ensure fast traversals
over the tree structure during query evaluations.

We propose an alignment algorithm for decomposing the
original query into a set of independent sub-queries the results
of which are then combined to produce the final results.

E. Paper Organization

The remainder of this paper is organized as follows: sec-
tion II a description of related works. Section III provides
background info on vantage point trees and how they can
be adapted to be used for locality sensitive hashing. Sec-
tion IV describes an architectural overview of the proposed
framework. Section V describes data indexing and the query
evaluation process. We report on our performance evaluations
in section VI. The paper is brought to a close with our
conclusions and future work in section VII.

II. RELATED WORK

A. Locality Sensitive Distributed Hash Tables

Locality sensitive hashing in the context of distributed hash
tables aim hash similar data items to the same or near by nodes
in the DHT indexing space. Hamming DHT [8] leverages
work showing similarity between items can be represented
by the Hamming distance between their Random Hyperplane
Hashing (RHH) identifiers. The Hamming DHT provides a
systems that maintains a structure that establishes connections
between nodes according the the Hamming distance between
their RHH identifiers. This creates a system where small

groups of machines hold similar data thus reducing the hops
in the decentralized system compared to a traditional DHT
network overlay like as Chord.

Other work has be done in effectively distributing mul-
tidimensional data using LSH techniques [9], [10]. Many
challenges arise when combining these two concepts. There
are numerous LSH functions each with their respective abil-
ities and shortcomings, there is no “silver bullet” technique
for applying them to a distributed setting. Furthermore, load
balancing across a cluster of machines becomes a significant
challenge. Because data is now being grouped by similarity,
the attributes of the data play a role in their location. If a
dataset has high similarity the node(s) assigned to that similar
subset may be overworked.

B. Sequence Alignment and Homology Searching

1) Basic local alignment search tool (BLAST): The Basic
Local Alignment Tool (BLAST) [1] is one of the most popular
tools for homology searching DNA and proteomic sequences.
BLAST allows for similarity searches bounded by a threshold
value to determine when a sequence does not have sufficient
similarity to the query. BLAST uses a word-based heuristic
that finds short matches between sequences and extends them
to create High-scoring Segment Pairs (HSP) to be used to find
an alignment. First, the query sequence is tokenized into k-
letter words. Probably variants for each word are generated and
BLAST then searches the whole database for exact matches
to the generated tokens. Each match is extended in both di-
rections until the accumulated score begins to decrease. HSPs
having high enough score are kept; the rest are discarded. The
significance of each HSP is evaluated. High scoring HSPs are
further extended to find gapped alignments. Because BLAST
requires, to some extent, a complete search when looking
for exact matches, large numbers of sequences result in poor
running times.

2) Other Alignment Tools: Many tools have been devel-
oped to improve upon the performance of BLAST [2], [11].
mpiBLAST [3] utilizes the Message Passing Interface (MPI)
to parallelize the BLAST algorithm across multiple processes.
The BLAST database is distributed onto each of the process-
ing nodes. BLAST searches are then run on each segment
in parallel and subsequently aggregating results. While this
solution provided superlinear speedups in some cases, its
applicability falls short in the context of cloud resources.
MPI, in general, performs worse in environments with shared
memory over distributed systems. Even more challenges arise
when considering the elastic infrastructure that cloud resources
provide.

The BLAST Like Alignment Tool (BLAT) is one of the
more famous tools that improve on BLAST. By utilizing the
lookup speeds of hash tables, BLAT observers speed ups about
50 times faster than BLAST. In doing so, however, it sacrifices
sensitivity due to the inherent matching restrictions that hash
tables impose.

Ghostx [12] is an alignment tool that utilizes suffix arrays
for both the database and queries. It follows the same seed-



and-extend strategy as BLAST: search for seeds of the query
in the database, extend the seeds first without gaps, then
finally perform a gapped extension. It differs from BLAST
in its technique to identify seeds. Ghostx uses suffix arrays
with heuristics to prune the searching space. While Ghostx
showed substantial performance improvement versus BLAST
with similar sensitivity, their approach is designed for a single
machine and thus is very memory heavy.

Locality sensitive hashing has also been explored in the
bioinformatics community. The LSH-ALL-PAIRS algorithms
developed by Jeremy Buhler [13] was one of the first LSH
algorithms for finding similarities in genomic databases. LSH-
ALL-PAIRS is a randomized search algorithm for ungapped
local DNA alignments. A LSH function, h(X), chooses k
indices from the sequence at random to form a k-tuple. There
is a high probability that two similar sequences will produce
the same k-tuple from h(x). This drastically reduces the
number of comparisons required to confidently infer similarity
between sequences.

C. Bioinformatics in the Cloud

Moving bioinformatics applications to the cloud has been
a challenge [14]. There have been efforts to implement the
BLAST algorithm in the cloud via MapReduce. CloudBLAST
[5] and Biodoop [6] provide the parallelization, deployment,
and management of the BLAST algorithm in a distributed
environment. CloudBLAST utilizes Apache Hadoop, an open-
source implementation of the MapReduce paradigm, to par-
allelize the execution of BLAST. The approach entailed seg-
menting the query sequences and running multiple instances
of BLAST on each segment. Biodoop takes an opposing
approach: distribute the data among computing resources,
rather than the computation, and individually take reference
sequences to produce alignments with the query sequences.
However, both methods see sublinear speedup as the number
of compute resources grow.

Our system differs from other relevant methods previously
discussed as it targets elastic cloud infrastructures without the
dependency on MapReduce implementations such as Hadoop.
With the use of LSH and inverted indexing over a distributed
hash table, we achieve higher performance with the ability to
scale with the rapid growth of sequenced genomic data. Other
methods presented in this section either are not designed to
scale or scale their solutions by forcing the computation into
MapReduce.

III. LOCALITY SENSITIVE HASHING WITH VANTAGE
POINT TREES

Nearest neighbor search problems are found in many sci-
entific disciplines. NNSs are formulated as an optimization
problem for finding objects similar to a target within a set
and are typically computationally expensive. They can be used
to locate and align target sequences against a reference by
searching a single segment versus other sequences. Vantage
point trees (vp-tree) [15] provide a method for finding near-
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Fig. 1: A visual representation of a vertex, P , and a query, q,
in a vp-tree in relation to points in P ’s left and right subtrees.
Black dots in the shaded region represent elements in P’s right
subtree. While black dots in the non-shaded regions reside in
P’s left subtree.

est neighbors with logarithmic time bounds on creation and
operations with linear space.

A. Background: Vantage Point Trees
A vp-tree is a binary partitioning tree over data in a metric

space. The fundamental concept is quite simple: given a set
of data and a central data element (vantage point), recursively
partition the data points into two divisions: those that are
close to the vantage point and those that are not. In other
words, elements that are near the parent will be in the left
subtree and elements that are far from the parent will be in the
right subtree. This creates a binary tree in which neighboring
vertices are likely to be close in the metric space.

Each vertex in a vp-tree maintains four values: an center
value, a radius µ, a left child, and a right child. Figure 1
shows a graphical representation of a node, P , and a query,
q, within a vp-tree. The non-shaded circle, whose radius is
labeled µ, represents the distance threshold of the parent node
P . All of the elements within the non-shaded circle have a
distance to the parent that is less than µ, and thus belong in
the left subtree. Conversely, the elements in the shaded region
will reside in the right subtree as they have distances to the
parent that are greater than µ. The radius of P must encompass
roughly half of the data points in order to maintain a balanced
vp-tree.

B. Distance Functions
Defining a distance function between genomic sequences

has been heavily studied [1], [16], [17]. The vp-tree’s re-
quirement for a metric space distance function eliminates



many of the prominent scoring techniques used to define
the similarity between protein sequences. Amino acid scoring
matrices such as PAM [16] and BLOSUM [17] effectively
evaluate the quality of alignments, but do not meet the metric
space requirements.

In the case of DNA sequences, Mendel uses a simple metric
of Hamming distance. Hamming distance [18] is defined as the
number of positions between two equal length strings at which
the characters differ. Hamming distance satisfies the metric
space prerequisites. While trivial to compute, this distance
function has some inherent weaknesses. Substitution errors
between sequences are effectively captured in the distance,
but errors that produce shifts, e.g. insertions and deletions
(indels), produce inaccurate distances. Mendel overcomes this
challenge with the use of sliding windows to account for shifts;
this topic is further discussed in section V.

Finding a metric space distance function for protein se-
quences is a much greater challenge. Comparing the similarity
of amino acids is much more complex. The variance of
the average amino acid residues distribution with protein
sequences invalidates Hamming distance as a quality measure
of distance, even without indels. The most frequently occurring
amino acid, Leucine (Leu), appears almost nine times more
frequently than Tryptophan (Trp), the most infrequent, ac-
cording to the September 2015 UniProtKB/Swiss-Prot protein
knowledgebase statistics [19]. More specifically, a Trp-Trp
match is much stronger than a Leu-Leu match since it is
significantly less likely to occur by chance.

Furthermore, non-uniform mutation rates between amino
acids create a gradient of possible pairwise similarity scores
for mismatches. In comparison to DNA sequences, where
bases are classified as a match or mismatch, amino acid
mismatches can vary in strength. Point accepted mutations
(PAM), are the replacement of an amino acid within a protein
sequence that is accepted by natural selection. The PAM
matrix, used to score protein sequence alignments, indicates
the likelihood of a certain amino acid replacing another [16].
Similarly, the BLOcks SUbstitution Matrix (BLOSUM) is
another, arguably more, popular scoring matrix that takes into
account the similar factors as PAM, but uses an implicit model
of evolution.The BLOSUM62 matrix is a common default
scoring matrix in modern alignment applications including
BLAST.

Mendel uses the absolute value of the difference between
characters as the distance. For instance, for each entry in the
BLOSUM62 matrix, Bi,j , we apply the following element-
wise operation to compute the corresponding Mendel distance
matrix entry, Mi,j :

Mi,j =
∣∣Bi,j −Bi,i

∣∣
This operation transforms each column in the lower triangle

matrix with respect to the diagonal entry such that each
diagonal is zero. This new matrix can be used to define the
distance between protein sequences in a metric space with
higher accuracy than the Hamming distance function. Because

each column is corrected independently, the mismatches retain
the same amplitude of penalty versus the exact match. The
major trade-off here is that some degree of accuracy is lost
in the case of exact matches. All diagonal entries being zero,
a requirement for reflexivity, means that the average amino
acid composition is not represented in the distance between
exact matches. It is important to note that this distance matrix
is not used to score the actual alignments, instead it is used
as a distance function to identify similar sequences in the vp-
tree. The matrix used to score the alignments is a user defined
parameter.

C. Vantage Point Tree Similarity Search

Searching a vp-tree for the nearest neighbors of some target
requires a single traversal. Let q be the query’s input point and
let τ be a radius around q that will contain q’s n nearest neigh-
bors. Initially τ encompasses all points in the tree. At each
step of the traversal, we redefine τ = mins∈S(d(q, vp), τ).
This redefinition allows τ to shrink to a radius around q’s
nearest neighbors. We observe three possible cases of how τ
can relate to the current vantage point in the vp-tree:

1) The area of τ lies completely inside of the area of µ;
2) the area of τ lies completely outside of the area of µ;
3) the areas of τ and µ intersect.

In the first case, depicted by the point q in Figure 1, all
of q’s nearest neighbors are guaranteed to be within the area
defined by µ, thus the right subtree does not contain any of the
nearest n neighbors and can safely be omitted in the search.
The second case is just the opposite: q’s n nearest neighbors
would lie outside the area defined by µ. Therefore, for the
same reason, the left subtree can be omitted in the search.
Finally, in the worst case, if τ and µ’s areas intersect, q’s
nearest neighbors can potentially be in both subtrees and, thus,
the search space is not reduced. The computational complexity
of searching for nearest neighbors is O(log(n)) in the average
case since each search is ultimately the traversal of a path from
root to leaf in a binary tree.

D. Performance Improvements

The original vp-tree can be altered to achieve better per-
formance in terms of memory usage and execution time [15].
Two major optimizations can be made: (1) add buckets at each
leaf to increase the tree’s capacity and (2) creating upper and
lower bounds at internal nodes on the subspaces as seen by the
ancestral vantage point. Adding large buckets to the leaves of
the vp-tree, contrast to each leaf maintaining only one element,
vastly reduces the total number of vertices, especially with
large number of elements.

One major challenge with genomic datasets and vp-trees we
discovered is that the dataset in its entirety must be present
and inserted at the time of creation. The original data structure
did not support single element insertions. Naı̈vely inserting
subsequences one-at-a-time quickly leads to an unbalanced
tree. When data volumes grow large this imbalance resulted



in linear running times which impacted performance substan-
tially. The dynamic indexing problem for vp-trees breaks down
into four cases when updating the tree [20]:

1) Leaf node bucket is not full:
• Add to bucket

2) Leaf node bucket is full, but sibling node has room:
• Redistributed all values under the common parent

3) Leaf and sibling nodes are full, but there exists an
ancestor node whose subtree has room:
• redistribute all values under the common ancestor

4) Completely full tree:
• Split the root into two
• Apply case (2) or (3) as needed

To help alleviate the added complexity of element insertions
we strike a middle ground by adding elements in large
batches, instead of individually, which maintains an acceptable
performance while maintaining an optimized, balanced vp-tree
to use as an NNS data structure.

E. Vantage Point Tree as a LSH Function

Utilizing a vp-tree as the data structure for voluminous
datasets presents new challenges. Biological datasets can con-
tain billions of items to act as elements in a vp-tree. Storing
all of the elements in a single, memory resident data structure
is not feasible when the datasets grow large. The vp-tree can
be augmented by adding a binary prefix to each node within
the tree. The value of the prefix of a given node is computed
as follows: the root has a prefix of 1 and child vertices will left
shift its parent’s prefix by one, and add 1 if it is a right child.
This small modification gives nodes an integral value that
uniquely represents the path taken to get there. This creates
some degree of integral relationship between node prefixes and
the metric distance between them.

F. Vantage-Point Prefix Tree Hashing

The vp-prefix tree does not alone create a good hashing
function as there are many problems with the proposed hashing
scheme. Maintaining a vp-tree for the entire dataset at this
scale is non-trivial. Also, searching over a large vp-tree creates
a memory intensive task that causes a severe bottleneck when
hashing numerous items.

A cutoff threshold depth is imposed to coarsely index
data into similar groups. After the threshold depth has been
reached, the traversal stops and the hash value is computed
from there based on the prefix. This will create a hash function
that produces collisions when two data points are similar. The
hierarchical two-tiered DHT utilizes collisions as a way to
group similar data for query evaluation. Figure 2 shows a small
example of how a vp-prefix tree might hash data into a groups.

IV. SYSTEM ARCHITECTURE

A. Distributed Hash Tables

Prominent distributed storage systems such as Amazon
Dynamo [21] and Apache Cassandra [22] both utilize the
DHT paradigm as their underlying infrastructure. As the name
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Fig. 2: A vp-prefix tree being used as a group hash function
with a depth threshold of 3. The depth of the threshold
effectively determines the resolution of similarity that each
group maintains.

suggests, DHTs employ similar insertion and retrieval mech-
anisms to that of a hash table: key-value storage and lookup.
Each node is partitioned onto a logical keyspace typically
using a flat hashing scheme. Subsequently, data points are
hashed using a unique key to the same keyspace in order to
determine its storage node.

DHTs do not come without a slew of their own problems
and challenges. Like a hash table, lookups are inherently
limited to exact match queries. Data cannot be retrieved
without the unique key the data was indexed with. Expressive
queries such as wild card, range-based, or approximate queries
are not possible with the basic DHT design. There have been
many attempts on overcoming this challenge with the uses of
locally-sensitive hashing or hierarchical DHTs [8], [23]. Also,
the decentralization requirements increase the complexity of
routing requests. Having each node maintain locations for
all nodes in the cluster, introduces challenges when nodes
leave and join. Conversely, maintaining relationships to only
portions of the cluster adds complexity via routing protocols
thus increasing request latency.

B. Inverted Indexing

Many widely used large-scale data storage systems utilize
inverted indexing as a central component to achieve timely
query results. An inverted index is a data structure used to
locate content quickly by mapping content to its location in
a database or documents. This is contrary to the traditional
forward index which records the content of each document.
Inverted indexing is ideal for data that has content dispro-
portional to the number of documents containing it and in
scenarios where data is inserted infrequently and queried often.

Figure 3 shows a simple example of an inverted index over
text documents. In this toy example, the database contains



D[0]: “my car slow” 
D[1]: “this my car”  
D[2]: “her car fast” 

  
  
  
  
  

 “car”: 0, 1, 2 
  “my”: 0, 1 
“this”: 1 
“slow”: 0 
 “her”: 2 
“fast”: 2 

  
Fig. 3: A small demonstration of an inverted index over three
documents. Each word is indexed by the document(s) it is
found in.

three documents. A lookup query for the search terms “fast
car,” for example, would compute the intersection between
the individual queries “fast” (D[2]) and “car” (D[0], D[1],
D[2]) to return location D[2]. Without inverted indexing, the
same query would require a sequential iteration of all three
documents to find documents matching all search terms.

In the context of sequence alignment, treating segments
of the reference sequences as the content and treating the
segment’s location in the sequence analogous to the database
location, an inverted index can be used to find an alignment
of the query segment to its position in the reference sequence.
Since query sequences are short in comparison to the genomes
being searched over, this creates an optimal environment to
apply inverted indexing.

There are a few significant shortcomings of utilizing an
inverted index alone to find alignments. Most notably, inverted
indices mandate perfect matches between the target and the
reference. If even one character in the sequence differs from
the indexed segment, there will not be an initial match during
the lookup and no results will be found. This also severely
limits the expressive capabilities of a query as the exact match
requirement constrains it to a specific length. Accounting for
both sequencing errors and genomic structural variation are
essential to a sequence similarity search tool. Mendel resolves
these issues with the use of sliding windows and NNSs over
vp-trees to allow for variable length queries without the exact
match limitation.

C. Network Topology

Mendel’s network overlay topology is organized as a zero-
hop DHT. The class of zero-hop DHT’s, such as Amazon
Dynamo, provide enough state at each node to allow for direct
routing of requests to their destination without the need for
intermediate hops.

Mendel deviates from the standard DHT in that it employs
a hierarchical partitioning scheme. Each storage node within
the system is placed in a group. The size and quantity of
groups are a user-configurable parameter that can be adjusted
to best fit the data stored. This scheme leverages the vp-prefix
tree to coarsely hash data elements to groupings of nodes. A
second flat hash will index the data among its group evenly
to maintain a good load balance to avoid data hotspots. The
two-tiered partitioning structure, where data is first placed in
groups among similar data, then hashed within that group,
increases the efficiency of retrieval operations by reducing the
search space to only similar data.

V. INDEXING AND QUERY EVALUATION

A. Inverted Indexing Blocks

To combat the exact match challenges of inverted indexing,
a series of sliding windows and locality sensitive hashes are
used to index sequences in a manner that can be queried
without the equality restriction. Each sequence to be inserted
into the system follows three steps to be successfully indexed:
(1) inverted index block creation, (2) vp-prefix tree sequence
dispersion, and (3) local vp-tree indexing.

1) Inverted Index Block Creation: In the first phase, seg-
ments of the sequence are created from the input data. The
sequences are iterated with a k-length sliding window pro-
ducing L−k segments per sequence, where L is the sequence
length. These segments, called inverted index blocks, are the
basic unit of computation and storage in the system. By
analyzing these blocks with NNS data structures, queries can
be accurately evaluated even if they are of variable lengths
or contain mismatches. Metadata, including sequence ID,
start/end positions, and references to the previous/next blocks,
is obtained here to be used during query evaluation. Batches
of inverted indexing blocks are accumulated as the input data
is parsed and are submitted in sets to the vp-prefix hash tree
for distribution among the cluster.

2) Vp-Prefix Tree Sequence Dispersion: Each block is
hashed independently using the vp-prefix tree indexing scheme
to determine the its storage group. Using this group hashing
system, sequences with similar structures will be collocated
within the same group. The depth threshold is set to half the
tree’s depth to strike a balance between timely calculation of
hash values and achieving a balanced distribution of data over
the cluster.

When blocks arrive at a storage group the individual storage
node must still be calculated. Employing a second-tier vp-
prefix hashing tree at this level proved to be ineffective. Load
balancing became significantly harder to achieve with a finer
grain vp-prefix tree hash. During large insertions the index-
ing tree was frequently updated and redistributed requiring
a choice between trade-offs: relocating data between nodes
during updates to maintain a balanced tree, versus keeping
an unbalanced tree but creating hotspots within the groups.
Neither option yields promising performance. Furthermore, we
want to exploit the inherent parallelism during large, compu-
tationally expensive queries. Grouping similar blocks onto the
same node drastically reduces the amount of parallelism thus
hindering performance.

Instead, Mendel use a tried-and-true flat hashing scheme,
SHA-1, to disperse the blocks within a group. The trade-off
being queries must be replicated to all nodes within a group
since any node may have a matching block. Load balancing
within groups will be near optimal with a flat hashing system.
Because of this, it is highly likely that all nodes within a group
contain relevant blocks to any query assigned to that group,
optimizing the group-wide parallelism during large queries.

3) Local vp-Tree Indexing: Finally, once an inverted index
block reaches its destination storage node within its storage
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Fig. 4: An illustration of the network topology and data flow of a Mendel cluster. Each inverted index block is hashed to a
predefined group of storage nodes using the vp-prefix tree hash. Within its group, the data is hashed a second time using a
SHA-1 hash to distribute data among the group evenly.

group, it will be indexed in a regular local vp-tree that contains
all blocks the storage node maintains locally. This vp-tree is
implemented using dynamic update balancing, thus further
optimizing query performance in exchange for additional
preprocessing. This memory-resident NNS structure serves as
a starting point for queries to find high similarity segments to
begin the sequence alignment analysis.

B. Query Evaluation

Mendel strives to emulate the prompt responsiveness that
DHTs provide along with the ability to conduct robust queries.
During query evaluations, the target query sequence(s) will
pass through a series of steps similar to data insertions to
determine storage node groups that are likely to have relevant
results.

Initially, when a query enters the system, the storage node
that receives the query will be tracked as the query’s entry
point. This framework supports a symmetric architecture: any
node in the cluster can perform as a query’s entry point and
generates identical results. Query entry points, at both the
system and group levels, are utilized as query coordinators
for result aggregation checkpoints. Much like the indexing
stage, a sliding window process is performed over the query
sequence. This normalizes the query into subqueries that are
the same length as the indexed data. The sliding window here,
however, steps over the query sequence in larger intervals of
size k, rather than of size one, to reduce the amplification
of the subqueries. Using vp-prefix tree hash function, each
target query subsequence is hashed to determine the groups
within the system that may contain relevant subsequences.
Notably, multiple groups can be selected from the vp-hash tree
if the path branches while traversing the tree. In this case, the
subquery is replicated to both groups.

Each group receiving a subquery will be tracked as the
query’s group entry point. Since the data blocks within the

group were distributed using a flat hash, any node has the
possibility of having a high scoring match. Thus, the query
block is replicated to all nodes within a group in parallel. For
each segment of the query that reaches an individual storage
node, a local vp-tree lookup is performed. Using parameters
defined within the query, the n nearest neighbors to the subse-
quence are added to a candidate list of possible matches. Two
measures are computed for each candidate: (1) a percent iden-

tity score, computed as
hamming(subsequence, candidate)

length(candidate)
and (2) a consecutivity score, c-score, that calculates from
the existing matches the percent of those matches that are in
succession. The c-score provides a metric to identify strong
partial matches. For protein sequences, substitutions to which
the BLOSUM62 matrix gives a positive score are considered
as successive. The query specifies minimum c-scores to be
considered. Candidates with a score lower than that threshold
are dropped from the candidate list. The remaining matches
are used as anchors to be extended.

Each inverted index block maintains references to its neigh-
boring blocks. This allows the expansion of the anchors in
both directions to lengthen them. Starting with the segment
previous to the match, the sequence is incrementally extended
until the extension deteriorates the score of a match below the
threshold. This expansion is done on both sides of the match
to create an anchor for the alignment. The diagonal of the
anchor (the difference between the starting positions of the
database and query sequences) is recorded and each anchor
is then categorized by its sequence ID; binning matches with
other anchors from the same sequence. The bins are sorted by
the anchor start position to create a set of categorized anchors.

The first aggregation stage occurs at each query group entry
point. All nodes in the group send their expanded anchor set to
the group entry point to combine overlapping anchors on the
same diagonal. A similar step is repeated at the system entry



point: all group coordinators send their matching segments to
the system coordinator. Again, any overlapping anchors on the
same diagonal are combined and scored. Finally, to identify
potential gapped alignments from a bin of extended anchors,
we follow a similar approach to that of Gapped BLAST [11].
For each anchor having a normalized score greater than some
threshold S, a gapped extension is performed. The gapped
extension considers all anchors from the same sequence within
l diagonals in either direction. If the resulting gapped extension
has an expectation value, E, low enough to be of interest, it
will be included in the final report of alignments. Finally, all
results are scored according to the specified scoring matrix,
ranked by expectation value, and returned to the client. All the
different query parameters with brief descriptions are outlined
in table I.

TABLE I: Query Parameters

Parameter Description Type
k Sliding window step int(1..∞)
n No. of nearest neighbors to find int(1..∞)
i Identity threshold float(0..1)
c Consecutivity score threshold float(0..1)
M Scoring Matrix string
S Score threshold for gapped extension float(0..∞)
l Gapped alignment band width int(0..∞)
E Expectation value threshold float(0..∞)

VI. PERFORMANCE EVALUATION

To benchmark the effectiveness of Mendel, we ran several
tests to simulate application usage on a heterogeneous cluster.
We targeted four main aspects in our tests: (1) the performance
of the vantage point prefix tree as a LSH function, (2) query
turnaround time, (3) the sensitivity achieved, and (4) the
scalability of our system with respect to data volume and
number of nodes.

A. Experiment Environment

1) Cluster Setup: The testing environment consisted of a
50-node heterogeneous cluster composed of 25 HP DL160
servers (Xeon E5620 12 GB RAM, 15,000 RPM disk) and 25
Sun SunFire X4100 servers (Opteron 254, 8 GB RAM, 10,000
RPM disk) connected over a LAN. All machines are running
Fedora 21 (Twenty One) and OpenJDK 1.8.0.

2) Datasets: Protein sequences were sourced from the Na-
tional Center for Biotechnology Information (NCBI) genomic
database. The datasets included the non-redundant protein
(nr) containing 73,021,224 reference sequences and two
smaller whole genome query sets (s_aureus and e_coli).

B. Data Distribution and Load Balancing Evaluation

Our first benchmark aims to test the load distribution of
Mendel. We indexed the 100 GB of genomic data over the
50-node cluster. The percentage of total system data being
stored at each node was recorded. Figure 5 shows the load
balance using our hierarchical hashing topology in comparison
to a standard flat hash. While this data distribution is not as
balanced as the SHA-1, the difference between single nodes
never exceeds 1% of the total data volume stored. The load

balancing within groups maintains a near perfect distribution
since a SHA-1 hash is used for the inter-group data dispersion.
This is also observed in the clustering of groups; the group
configuration of size five, is evident in the figure.

C. Query Performance

We looked at two different aspects of the data and its
impact on the performance. First, the length of a query plays
an important role in the overall performance of sequence
similarity searches. Large query lengths create substantially
more processing than that of a smaller ones. We carried out
an experiment to measure the impact query length has on
Mendel versus BLAST. We ran NCBI’s BLAST+ version
2.2.31 for these benchmarks. According to an analysis by
George Coulouris of several hundred thousand BLAST queries
run at the National Institutes of Health, 90% of BLAST protein
sequence queries are less than 1000 amino acid residues
in length [24]. We executed queries from the s_aureus
query set with target sequence lengths ranging from 500 to
3000 residues over the nr dataset. Figure 6a shows average
turnaround times for the various queries. The length of an
alignment query has little effect on the overall performance
in Mendel. Another essential component of performance is
the volume of the data being searched over. We conducted an
experiment to test this aspect by fixing the length of the queries
to 1000 residues and incrementally increasing the database
size; measuring the average query response times. Figure 6b
shows the results of this benchmark. Database size has a less
impact on the performance of the system in comparison to
BLAST. We observe nearly constant average turnaround times
The DHT design can accommodate very large volumes of data
before the impact of performance is observed. While BLAST
can maintain sufficient performance when the database is
memory resident, progress comes to a halt when the data
volumes grow large. The support for incremental scalability
allows users to tailor the cluster to their specific needs.

D. Scalability

The scalability of Mendel is essential to be able to cope with
growing rates of genomic data. The system should be able to
cope with large volumes of data while maintaining acceptable
performance. Figure 6b shows the hash-table like query perfor-
mance as the data volume grows. Performance improvements
should also be observed as the amount of resources increase.
To test how well the Mendel scales with resources, we indexed
the nr dataset over clusters of varying sizes and measured
the average turnaround time for the e_coli query set for
each cluster size. Figure 6c shows a sufficient scalability with
respect to the size of the cluster.

E. Query Sensitivity

The final experiments we conducted concern the sensitivity
of our system. Sensitivity is a pivotal component to sequence
alignment. Fast results are near useless if they are inaccurate.
Sensitivity in this context can be defined as the likelihood of
finding high scoring alignments providing they exists. Finding
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Fig. 5: A comparison between the load balancing of a standard hash function (a) versus our two-tiered vantage point LSH
hashing scheme (b)
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Fig. 6: Various performance benchmarks of our proposal versus BLAST. (a) and (b) show how the performance doesn’t degrade
as the different inputs grow large. Plot (c) shows the scalability of the system as nodes are added to the cluster. The sensitivity
is shown in plot (d) in comparison with BLAST.

the balance between performance and sensitivity is a key
issue in sequence similarity searching. The final benchmark

we conducted involved finding the sensitivity limits of our
solution. We generated a 1000 amino acid residue target



sequence to be the starting point in the sensitivity measure. At
decreasing similarity levels, groups of sequences are generated
by randomly mutating residues from the original sequence cor-
responding to the desired similarity level. For each similarity
level, an all versus all query is conducted and the percentage of
matches found was recorded. Figure 6d displays the results of
the experiment. The NNS algorithm overcomes the challenge
of finding alignment when the similarity is low. Since the NNS
is able to identify larger seeds that may be missed in other
systems it can better identify lower similarity matches.

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have proposed a novel distributed system, Mendel,
aimed at efficiently conducting similarity searches of DNA
and protein sequences versus a large genomic database. We
approached this problem with a distributed systems mindset to
tackle the computational challenges associated with sequence
alignment at scale. Inverted indexing is a known solution to
the genre of indexing problems where there is a disproportion
between content and the locations that hold it. By applying
and inverted index over the sequence data in a distributed
hash table, we can efficiently identify small similar segments.
We modified a NNS data structure, the vantage point tree,
as a way to create a locality sensitive hash function over
inverted indexing sequence segments into a distributed hash
table. Grouping similar inverted indexing blocks into the same
cluster group allows substantial reduction in the search space
needed to find matching segments for alignment queries. The
same base NNS data structure is used to find the local data
on each individual storage node that is matching to a certain
threshold. By using these matching segments as an anchor
for extension, similar subsequences can be identified. Our
benchmarks exhibit performance improvements in runtime,
sensitivity, and scalability over other modern sequence align-
ment tools.

B. Future Work

Currently, many aspects of the system configuration require
user intervention with an in-depth knowledge of the Mendel
framework and are difficult to change on-the-fly. Also, in-
dexing times for exceedingly large datasets can be inhibitive.
Adding the ability to save pre-indexed data for popular large
datasets, such as the non-redundant protein (nr) or reference
sequence (refseq protein), for various cluster sizes would save
researchers a lot of time. There are also a few aspects of the
distributed environment that are left unchecked. Providing a
fault tolerant system, in terms of data integrity as well as jobs
completion, is a key part that warrants our attention. With
the growing popularity of personal genomics security concerns
become more prevalent; especially in a public cloud settings.
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